Graph Algorithms Deep Dive Key Concepts and Techniques
- Graph Representation
- Adjacency Matrix
- Adjacency List
- Graph Traversal
- BFS
- DFS
- Topological Sort
- Using DFS
- Kahn’s Algorithm
- Shortest Path Algorithms
- Dijkstra’s Algorithm
- Bellman-Ford
- Floyd-Warshall
- Union-Find / Disjoint Set
- Minimum Spanning Tree
- Prim’s Algorithm
- Kruskal’s Algorithm
- Cycle Detection
- Undirected Graph
- Directed Graph
- Bipartite Graph
Graph Representation
1. Adjacency Matrix
2. Adjacency List
C++ Code for both representations:
#include <iostream>#include <vector>using namespace std;
void adjacencyMatrix(int n, vector<vector<int>>& edges) {
vector<vector<int>> adjMatrix(n, vector<int>(n, 0));
for (auto& edge : edges) {
int u = edge[0];
int v = edge[1];
adjMatrix[u][v] = 1;
adjMatrix[v][u] = 1;
}
for (auto row : adjMatrix) {
for (auto val : row) cout << val << " ";
cout << endl;
}
}
void adjacencyList(int n, vector<vector<int>>& edges) {
vector<vector<int>> adjList(n);
for (auto& edge : edges) {
int u = edge[0];
int v = edge[1];
adjList[u].push_back(v);
adjList[v].push_back(u);
}
for (int i = 0; i < n; i++) {
cout << i << ": ";
for (int v : adjList[i]) cout << v << " ";
cout << endl;
}
}
Practice Problems:
- LeetCode 133: Clone Graph
- LeetCode 797: All Paths From Source to Target
- LeetCode 207: Course Schedule
- LeetCode 1557: Minimum Number of Vertices to Reach All Nodes
- LeetCode 1466: Reorder Routes to Make All Paths Lead to the City Zero
Graph Traversals (BFS and DFS)
C++ Code:
#include <iostream>#include <vector>#include <queue>using namespace std;
// BFS
void bfs(int start, vector<vector<int>>& adjList, int n) {
vector<bool> visited(n, false);
queue<int> q;
q.push(start);
visited[start] = true;
while (!q.empty()) {
int node = q.front();
q.pop();
cout << node << " ";
for (int neighbor : adjList[node]) {
if (!visited[neighbor]) {
q.push(neighbor);
visited[neighbor] = true;
}
}
}
}
// DFS
void dfs(int node, vector<vector<int>>& adjList, vector<bool>& visited) {
visited[node] = true;
cout << node << " ";
for (int neighbor : adjList[node]) {
if (!visited[neighbor]) {
dfs(neighbor, adjList, visited);
}
}
}
Practice Problems:
- LeetCode 200: Number of Islands
- LeetCode 994: Rotting Oranges
- LeetCode 103: Binary Tree Zigzag Level Order Traversal
- LeetCode 130: Surrounded Regions
- LeetCode 1306: Jump Game III
Topological Sort
1. Using DFS
2. Kahn’s Algorithm
C++ Code:
#include <iostream>#include <vector>#include <stack>#include <queue>using namespace std;
// Topological Sort using DFS
void topoSortDFS(int node, vector<vector<int>>& adjList, vector<bool>& visited, stack<int>& st) {
visited[node] = true;
for (int neighbor : adjList[node]) {
if (!visited[neighbor]) {
topoSortDFS(neighbor, adjList, visited, st);
}
}
st.push(node);
}
vector<int> topologicalSortDFS(int n, vector<vector<int>>& adjList) {
vector<bool> visited(n, false);
stack<int> st;
for (int i = 0; i < n; i++) {
if (!visited[i]) {
topoSortDFS(i, adjList, visited, st);
}
}
vector<int> topoOrder;
while (!st.empty()) {
topoOrder.push_back(st.top());
st.pop();
}
return topoOrder;
}
// Topological Sort using Kahn's Algorithm (BFS)
vector<int> topologicalSortKahn(int n, vector<vector<int>>& adjList) {
vector<int> inDegree(n, 0);
for (int i = 0; i < n; i++) {
for (int neighbor : adjList[i]) {
inDegree[neighbor]++;
}
}
queue<int> q;
for (int i = 0; i < n; i++) {
if (inDegree[i] == 0) q.push(i);
}
vector<int> topoOrder;
while (!q.empty()) {
int node = q.front();
q.pop();
topoOrder.push_back(node);
for (int neighbor : adjList[node]) {
inDegree[neighbor]--;
if (inDegree[neighbor] == 0) q.push(neighbor);
}
}
return topoOrder;
}
Practice Problems:
- LeetCode 210: Course Schedule II
- LeetCode 802: Find Eventual Safe States
- LeetCode 329: Longest Increasing Path in a Matrix
- LeetCode 1136: Parallel Courses
- LeetCode 1203: Sort Items by Groups Respecting Dependencies
Shortest Path Algorithms
1. Dijkstra’s Algorithm
2. Bellman-Ford
3. Floyd-Warshall
C++ Code:
#include <iostream>#include <vector>#include <queue>#include <climits>using namespace std;
// Dijkstra's Algorithm
vector<int> dijkstra(int n, vector<vector<pair<int, int>>>& adjList, int start) {
vector<int> dist(n, INT_MAX);
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
dist[start] = 0;
pq.push({0, start});
while (!pq.empty()) {
int u = pq.top().second;
pq.pop();
for (auto& neighbor : adjList[u]) {
int v = neighbor.first;
int weight = neighbor.second;
if (dist[u] + weight < dist[v]) {
dist[v] = dist[u] + weight;
pq.push({dist[v], v});
}
}
}
return dist;
}
// Bellman-Ford Algorithm
vector<int> bellmanFord(int n, vector<vector<int>>& edges, int start) {
vector<int> dist(n, INT_MAX);
dist[start] = 0;
for (int i = 1; i <= n - 1; i++) {
for (auto& edge : edges) {
int u = edge[0];
int v = edge[1];
int weight = edge[2];
if (dist[u] != INT_MAX && dist[u] + weight < dist[v]) {
dist[v] =
dist[u] + weight;
}
}
}
return dist;
}
// Floyd-Warshall Algorithm
vector<vector<int>> floydWarshall(int n, vector<vector<int>>& graph) {
vector<vector<int>> dist = graph;
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX && dist[i][k] + dist[k][j] < dist[i][j]) {
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
}
return dist;
}
Practice Problems:
- LeetCode 743: Network Delay Time
- LeetCode 787: Cheapest Flights Within K Stops
- LeetCode 1631: Path With Minimum Effort
- LeetCode 1514: Path with Maximum Probability
- LeetCode 1129: Shortest Path with Alternating Colors
Union-Find / Disjoint Set
C++ Code:
#include <iostream>#include <vector>using namespace std;
class UnionFind {
private:
vector<int> parent;
vector<int> rank;
public:
UnionFind(int n) {
parent.resize(n);
rank.resize(n, 0);
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]); // Path compression
}
return parent[x];
}
void unionSets(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX != rootY) {
if (rank[rootX] > rank[rootY]) {
parent[rootY] = rootX;
} else if (rank[rootX] < rank[rootY]) {
parent[rootX] = rootY;
} else {
parent[rootY] = rootX;
rank[rootX]++;
}
}
}
};
Practice Problems:
- LeetCode 684: Redundant Connection
- LeetCode 990: Satisfiability of Equality Equations
- LeetCode 721: Accounts Merge
- LeetCode 1319: Number of Operations to Make Network Connected
- LeetCode 128: Longest Consecutive Sequence
Minimum Spanning Tree
1. Prim’s Algorithm
2. Kruskal’s Algorithm
C++ Code:
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
// Prim's Algorithm
int primMST(int n, vector<vector<pair<int, int>>>& adjList) {
vector<bool> inMST(n, false);
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
int mstCost = 0;
pq.push({0, 0}); // (cost, node)
while (!pq.empty()) {
int u = pq.top().second;
int cost = pq.top().first;
pq.pop();
if (inMST[u]) continue;
mstCost += cost;
inMST[u] = true;
for (auto& neighbor : adjList[u]) {
int v = neighbor.first;
int weight = neighbor.second;
if (!inMST[v]) {
pq.push({weight, v});
}
}
}
return mstCost;
}
// Kruskal's Algorithm
class Edge {
public:
int u, v, weight;
Edge(int _u, int _v, int _weight) : u(_u), v(_v), weight(_weight) {}
};
bool compare(Edge e1, Edge e2) {
return e1.weight < e2.weight;
}
int kruskalMST(int n, vector<Edge>& edges) {
sort(edges.begin(), edges.end(), compare);
UnionFind uf(n);
int mstCost = 0;
for (auto& edge : edges) {
if (uf.find(edge.u) != uf.find(edge.v)) {
mstCost += edge.weight;
uf.unionSets(edge.u, edge.v);
}
}
return mstCost;
}
Practice Problems:
- LeetCode 1584: Min Cost to Connect All Points
- LeetCode 1135: Connecting Cities With Minimum Cost
- LeetCode 1631: Path With Minimum Effort (Can be solved with MST)
- LeetCode 1101: The Earliest Moment When Everyone Become Friends
- LeetCode 1579: Remove Max Number of Edges to Keep Graph Fully Traversable
Cycle Detection
1. Undirected Graph
2. Directed Graph
C++ Code:
#include <iostream>#include <vector>using namespace std;
// Cycle Detection in Undirected Graph using DFS
bool isCyclicDFS(int node, int parent, vector<vector<int>>& adjList, vector<bool>& visited) {
visited[node] = true;
for (int neighbor : adjList[node]) {
if (!visited[neighbor]) {
if (isCyclicDFS(neighbor, node, adjList, visited)) {
return true;
}
} else if (neighbor != parent) {
return true;
}
}
return false;
}
bool hasCycleUndirected(int n, vector<vector<int>>& adjList) {
vector<bool> visited(n, false);
for (int i = 0; i < n; i++) {
if (!visited[i]) {
if (isCyclicDFS(i, -1, adjList, visited)) {
return true;
}
}
}
return false;
}
// Cycle Detection in Directed Graph using DFS
bool isCyclicDFSDirected(int node, vector<vector<int>>& adjList, vector<bool>& visited, vector<bool>& recStack) {
visited[node] = true;
recStack[node] = true;
for (int neighbor : adjList[node]) {
if (!visited[neighbor] && isCyclicDFSDirected(neighbor, adjList, visited, recStack)) {
return true;
} else if (recStack[neighbor]) {
return true;
}
}
recStack[node] = false;
return false;
}
bool hasCycleDirected(int n, vector<vector<int>>& adjList) {
vector<bool> visited(n, false);
vector<bool> recStack(n, false);
for (int i = 0; i < n; i++) {
if (!visited[i]) {
if (isCyclicDFSDirected(i, adjList, visited, recStack)) {
return true;
}
}
}
return false;
}
Practice Problems:
- LeetCode 785: Is Graph Bipartite?
- LeetCode 207: Course Schedule (Directed Graph Cycle Detection)
- LeetCode 261: Graph Valid Tree
- LeetCode 802: Find Eventual Safe States (Directed Graph Cycle Detection)
- LeetCode 1462: Course Schedule IV (Cycle detection in multiple queries)
Bipartite Graph
C++ Code:
#include <iostream>#include <vector>#include <queue>using namespace std;
// Check if Graph is Bipartite using BFS
bool isBipartite(int n, vector<vector<int>>& adjList) {
vector<int> color(n, -1);
for (int i = 0; i < n; i++) {
if (color[i] == -1) {
queue<int> q;
q.push(i);
color[i] = 0;
while (!q.empty()) {
int node = q.front();
q.pop();
for (int neighbor : adjList[node]) {
if
(color[neighbor] == -1) {
color[neighbor] = 1 - color[node];
q.push(neighbor);
} else if (color[neighbor] == color[node]) {
return false;
}
}
}
}
}
return true;
}
Practice Problems:
- LeetCode 785: Is Graph Bipartite?
- LeetCode 886: Possible Bipartition
- LeetCode 1034: Coloring A Border
- LeetCode 994: Rotting Oranges (BFS based problem)
- LeetCode 1091: Shortest Path in Binary Matrix
This theme implements a built-in Jekyll feature, the use of Rouge, for syntax highlighting. It supports more than 100 languages. This example is in C++. All you have to do is wrap your code in markdown code tags:
```c++
code code code
```
int main(int argc, char const \*argv[])
{
string myString;
cout << "input a string: ";
getline(cin, myString);
int length = myString.length();
char charArray = new char * [length];
charArray = myString;
for(int i = 0; i < length; ++i){
cout << charArray[i] << " ";
}
return 0;
}
For displaying code in a list item, you have to be aware of the indentation, as stated in this Stackoverflow answer. You must indent your code by (3 * bullet_indent_level) spaces. This is because kramdown (the markdown engine used by Jekyll) indentation for the code block in lists is determined by the column number of the first non-space character after the list item marker. For example:
1. We can put fenced code blocks inside nested bullets, too.
1. Like this:
```c
printf("Hello, World!");
```
2. The key is to indent your fenced block in the same line as the first character of the line.
Which displays:
-
We can put fenced code blocks inside nested bullets, too.
-
Like this:
printf("Hello, World!");
-
The key is to indent your fenced block in the same line as the first character of the line.
-
By default, it does not display line numbers. If you want to display line numbers for every code block, you can set kramdown.syntax_highlighter_opts.block.line_numbers
to true in your _config.yml
file.
If you want to display line numbers for a specific code block, all you have to do is wrap your code in a liquid tag:
{% highlight c++ linenos %}
code code code
{% endhighlight %}
The keyword linenos
triggers display of line numbers. Produces something like this:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
int main(int argc, char const \*argv[])
{
string myString;
cout << "input a string: ";
getline(cin, myString);
int length = myString.length();
char charArray = new char * [length];
charArray = myString;
for(int i = 0; i < length; ++i){
cout << charArray[i] << " ";
}
return 0;
}
Enjoy Reading This Article?
Here are some more articles you might like to read next: